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Abstract
It is commonly assumed that in statistical closures describing fluid
or magnetohydrodynamic turbulence, the only ingredient needed for an
understanding of the turbulent evolution is the energy spectrum. This
assumption is shown to be valid only in very special cases. The key feature
invalidating the unique significance of the energy spectrum is the existence of
more than one non-vanishing quadratic invariant for a non-dissipative system,
such as the presence of non-zero energy and helicity invariants. The latter
plays a key role in the evolution of a turbulent MHD dynamo. These
results have serious implications for the development of practical closures
for inhomogeneous turbulence.

PACS numbers: 47.27.−i, 47.27.Ak, 47.27.Eq, 52.35.Ra

Formal theoretical calculations of the behaviour of turbulent fluids focus on the evolution of the
average value of elements of the energy spectrum. For example, if v(r, t) = ∑

k Xk(t)�ξk(r)
represents a spectral expansion of the velocity field in some set of orthonormal basis functions,
{�ξk(r)}, with an associated set of spectral coefficients, {Xk(t)}, labelled by three ‘quantum’
numbers symbolized by k, then the quantities on which turbulence closures have been focused
are {〈|Xk(t)|2〉}. For the case of homogeneous turbulence, translational invariance sanctions
this focus when the basis functions consist of plane waves; i.e., in this case k actually represents
a wave vector and �ξk(r) ∝ exp(ik · r). However, we have also found the focus on ensemble-
averaged spectral components of the energy to be useful in the description of inhomogeneous
turbulence [1]. Here the basis functions no longer consist of plane wave by virtue of the
geometric constraints of inhomogeneity. In this case, we termed our intuitively motivated
a priori justification for focusing on only the elements of the energy spectrum a ‘random-
phase approximation’ (RPA) and demonstrated its utility by comparison with direct numerical
simulations [2].

In this paper, however, we shall demonstrate the limitations of validity of the RPA. To
do so, we have designed the following dynamical system of equations which incorporate
the salient features of a truncated set of spectral equations for the Euler equation for an
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incompressible homogeneous fluid,

dXi(t)

dt
=

N∑
j,k=−N

cijkXj (t)Xk(t)

cijk = sgn(ijk)εijk(sj |j | − sk|k|)(si |i| + sj |j | + sk|k|)A(i, j, k) (1)

sl ≡ ±1

in which εijk is a totally antisymmetric array defined to be equal to +1 when the subscripts
are in monotonically increasing order or cyclical permutations thereof, equal to 0 when any
two subscripts are equal, and equal to −1 otherwise. All quantities are assumed to be real.
The subscript i takes on integer values from −N to N. If A(i, j, k) is chosen to be a totally
symmetric function of its arguments and if for each allowed value of l, sl is independently
fixed at either +1 or −1, then one can verify readily that W is constant, where

W ≡
N∑

k=−N

X2
k (t). (2)

For our numerical calculations, we have chosen the following definition for A(i, j, k):

A(i, j, k) ≡
[
(|i| + |j | + |k|)(|i| + |j | − |k| + 1)(|j | + |k| − |i| + 1)(|k| + |i| − |j | + 1)

16|i||j ||k|
] 1

2

for ijk �= 0, |i| + |j | � |k|, |j | + |k| � |i|, |k| + |i| � |j | (3)

A(i, j, k) ≡ 0 otherwise.

The structure of this toy model is designed to mimic closely the structure of the three-
dimensional Euler fluid in which the basis functions are eigenfunctions of the curl operator,
the Chandrasekhar–Kendall functions [3]. (In the context of Navier–Stokes literature, in
addition to [1], this choice of basis function has an illustrious history [4].) The scalar indices
taking on values on the domain −N, N are the analogue of wave vector indices.

We compare two cases: case A in which W = 1.116 and case B in which W = 3.00.
In both cases, N = 10 and X0(t) = 0 ∀t . In case A, we set si = sgn(i) ∀i and we set
Xi(0) = 1

|i|+1 for i �= 0. In case B, we set si = +1 ∀i and we set Xi(0) = 1, for i = 8, 9, 10 as

the only non-vanishing components of X. For case A, W varied by no more than 7.2 × 10−3%
of its initial value during the period, t = 0 to t = 180, of the numerical computation. For case
B, W varied by no more than 1.9 × 10−2% of its initial value during the computation period,
t = 0 to t = 100.

As one might expect, a mode’s evolution appears to be rather random. In figure 1,
which exhibits spectral evolution only over the last unit of time, one observes no meaningful
difference between the outputs, X−8(t) of case A and X−5(t) of case B. Qualitatively, the
output seems insensitive to the different initial conditions.

Now suppose we consider an arbitrary N-dimensional, time-independent, orthogonal
transformation that transforms the X to X̃,

Xj(t) =
N∑

i=−N

OjiX̃i(t) OT O = I (4)

and insert this expression into the evolution equation for the X, equation (1). We would find
an evolution equation for the new X̃ having a similar structure; namely,

dX̃i(t)

dt
=

N∑
j,k=−N

c̃ijkX̃j (t)X̃k(t). (5)
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Figure 1. Examples of the evolution of spectral coefficients during the last unit of time computed.
(a) A typical coefficient for case A: K = O(10−5), W = 1.116; (b) a typical coefficient for case
B: K = 27, W = 3.

Of course, if we were to look at typical traces of the evolution of elements of the
coefficients, {X̃i}, they would look qualitatively similar to those traces depicted in figure 1.
One’s first inclination would be to anticipate that only diagonal elements of 〈X(t)X(t)〉
and 〈X̃(t)X̃(t)〉 would be non-vanishing, namely 〈Xi(t)Xi(t)〉 and 〈X̃i(t)X̃i(t)〉, i = −N,

−N + 1, . . . ,−1, 1, . . . , N − 1, N . Such an expectation arises because of the apparent lack of
any constraint that is operant in the case of the nondiagonal values and because of the highly
nonlinear nature of the evolution equation that ‘stirs’ these coefficients. We have termed the
implementation of this intuitive assumption a ‘random-phase approximation’ (RPA) [1].

To check the validity of the RPA, we define the expectation value of a quantity Q(t),
〈Q(t)〉 by

〈Q(t)〉 =
∑250

i=1 Q(ti)

250
(6)

in which the set of times, {ti}, are 250 randomly selected points during the last unit of time of
the computations. For t within this last unit, we then define the fluctuation quantity,

δQ(t) = Q(t) − 〈Q(t)〉 (7)

which obviously satisfies 〈δQ(t)〉 = 0. It follows that

W = W̄ + δW (8)

in which

W̄ ≡
N∑

i=−N

〈Xi(t)〉2 (9)

δW ≡
N∑

i=−N

〈
δX2

i (t)
〉
. (10)

W̄ can be thought of as the energy in the mean field and δW as the energy in the fluctuations.
We can introduce a normalized correlation matrix, M(X), by

Mij (X) ≡ 〈Xi(t)Xj (t)〉(〈
X2

i (t)
〉〈
X2

j (t)
〉) 1

2

. (11)
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Next we define a mean magnitude of a nondiagonal correlation by

C(X) ≡ 1

N(2N − 1)

N∑
i ′<j ′=−N

Mi ′j ′(X) (12)

where we use the prime on the summation index to indicate that we are excluding a summation
on the value of the index equal to zero.

We list our results for cases A and B:

case A case B
W 1.116 3.00
W̄ 0.063 0.082
δW 1.053 2.918

C(X) 0.107 0.127
C(δX) 0.108 0.122
C(X̃) 0.105 0.355
C(δX̃) 0.105 0.366

We obtained the tilde variables by performing a randomly chosen orthogonal transformation
on the original variables.

If we think of W as energy and X as spectral coefficients of a flow, then for both cases
A and B we note that there is little mean energy, most of the energy being in the fluctuations.
Thus it is not surprising that for each case, C(X) ≈ C(δX) and C(X̃) ≈ C(δX̃). Note that the
diagonal elements of the correlation matrix, M(X), are unity. Although we can expect some
sampling-error-induced imprecision in the values of the C [5], what demands explanation
is the discrepancy between the values of C(δX̃) and C(X̃) with those of C(δX) and C(X),
respectively, in case B. There is no such discrepancy in case A. Clearly, the random-phase
approximation is not generally valid when applied to case B.

The discrepancy signals the presence of additional constraints on our ensemble of values.
Indeed equation (1), and consequently equation (5), has a second invariant quantity, which we
shall denote by K. This invariant, defined by

K ≡
N∑

k=−N

sk|k|X2
k(t) (13)

is analogous to the kinetic helicity invariant of a Euler fluid under suitable boundary conditions.
Over the 180 units of time in the numerical computation of case A, K varied no more than
8×10−5 starting from a value of 0. Over the 100 units of time in the computation of case B, K
varied by no more than 1.5 × 10−2% of its initial value, 27. If we express K using X̃ variables,
we find that it is given by the nondiagonal structure:

K =
N∑

i,j,k=−N

X̃jO
−1
ji si |i|OikX̃k. (14)

Thus, in the X̃ representation, neglect of the off-diagonal elements (not present in the original
X representation) would be tantamount to destroying the invariance of K. Such terms cannot
be set equal to zero. The presence of a second invariant of the dynamical system of equations
leads us to a preferred choice of basis functions, namely the set in which the correlation matrix
is diagonal. We shall refer to such a set as the principal set. In the general physical case, the
quantities corresponding to W and K, analogous to energy and helicity, are always real so that
one can always perform a unitary transformation to obtain such a basis.
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In analogy with equations (9) and (10), we can define K̄ and δK:

K̄ ≡
N∑

k=−N

sk|k|〈Xk(t)〉2 (15)

δK ≡
N∑

k=−N

sk|k|〈δX2
k (t)

〉
. (16)

For case A, we find that K = 7 × 10−5, with K̄ = −0.099 13 and δK = 0.099 20. For
case B, we find that K = 27.00, with K̄ = 0.57 and δK = 26.43.

We can use the conservation of K to predict the correlation matrix for our dissipationless
case. As is well known, the presence of the second invariant, K, affects the values of the
fluctuation spectrum in the basis in which K is diagonal. To see this, we compare the values
of the fluctuation energy spectra in the diagonal basis for cases A and B, against what would
be expected from the absolute equilibrium ensemble density of states distribution [6],

Deq(δX) = exp[−βδW(δX) − αδK(δX)][∏N
i ′=−N

∫ ∞
−∞ d(δXi ′)

]
exp[−βδW(δX) − αδK(δX)]

(17)

in which δW(X) and δK(X) are the expressions on the right-hand side of equations (10)
and (16), respectively. According to the absolute equilibrium ensemble, the average value of
δX2

k ,
〈
δX2

k

〉
eq

, is given by[
N∏

i ′=−N

∫ ∞

−∞
d(δXi ′)

]
Deq(δX)δX2

k

= − ∂

∂β
log

[∫ ∞

−∞
d(δXk)δX

2
k exp

(−βδX2
k − αsk|k|δX2

k

)]

= 1

2(αsk|k| + β)
. (18)

Using equation (4), we observe that the average value of a general correlation in a nondiagonal
representation can be obtained using the absolute equilibrium ensemble:

〈δX̃i(t)δX̃j (t)〉eq =
N∑

k=−N

OT
ik〈δXk(t)δXk(t)〉eqOkj . (19)

Note that only for a case of energy equipartition, a case in which K = 0, do the values of
〈δX̃i(t)δX̃j (t)〉eq for i �= j necessarily vanish.

The absolute equilibrium-ensemble-averaged values of δW and δK follow

δWeq =
N∑

j ′=−N

1

2(αsj ′ |j ′| + β)
(20)

δKeq =
N∑

j ′=−N

sj ′ |j ′|
2(αsj ′ |j ′| + β)

. (21)

Observe that in case A, in which δK was observed to be negligible, we had chosen
si = sgn(i). For this choice, we note that when we set α = 0, equations (20) and (21) yield
an equipartition spectrum of 0.0527 for the components of δWeq and 0 for the components of
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Figure 2. Case A, the case of expected energy equipartition: the dots depict the values of the 20
non-zero components of the fluctuation energy spectrum, δW. Their mean value is indicated by the
solid line.
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Figure 3. Case B, the case with non-zero K. The modal indices of the non-zero components of the
fluctuation energy spectrum δW increase from −10 to 10 as one proceeds from left to right: (a) the
dots depict their computationally evolved values; (b) the dots depict their values obtained using
the absolute equilibrium ensemble; (c) the dots depict the discrepancy: the values of (a) minus the
values of (b).

δKeq . For case B, we insert the values of δW , 2.918, and δK, 26.43, into equations (20) and
(21) and solve to find α = −2.855, β = 29.025.

In figure 2, we exhibit the fluctuation energy spectrum for case A during the last unit of
time computed. The solid line runs through at the level of the fluctuation spectrum given by
the absolute equilibrium ensemble. In figure 3(a), we exhibit the evolved fluctuation energy
spectrum for case B during the last unit of time computed; in figure 3(b), we exhibit the
fluctuation spectrum given by the absolute equilibrium for case B; in figure 3(c), we depict
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the difference between the results of figures 3(a) and (b). In both figures 2 and 3, the i = 0
mode is excluded.

These results have significant implications for the development of practical closures
for inhomogeneous turbulence. Essentially all formal theoretical closures provide a set
of equations that is restricted to determining the evolution of the energy spectrum. Here
we have demonstrated in a non-dissipative simplified model that such a restriction ignores
crucial dynamical properties unless the basis utilized provides a representation in which the
statistically averaged values of the cross correlations vanish. Although any complete set of
orthonormal basis functions may be utilized when only the energy invariant of the dynamical
system of equations exists, the presence of one or more additional quadratic invariants generally
requires a unitary transformation to a principal set. Thus the presence of non-vanishing cross
correlations contains information about the nature of the dynamics.

For the non-dissipative case with an energy invariant and additional quadratic invariants,
{Ij } (see for example, [7]), one would have an absolute equilibrium ensemble of the form
Deq ∝ exp[−βW − ∑

j αj Ij ]. The diagonal representation would be found by first solving
for the values of the Lagrange multipliers, β and {αj } using the values of the quadratic
invariants, and then finding the unitary transformation that diagonalizes

∑
j αj Ij .

An example of a calculation in which an infinite set of basis functions was chosen in such
a way that the helicity invariant of magnetohydrodynamics, the magnetic helicity (

∫
A · B dv),

was not diagonal can be found in [8]. The principal set of basis functions that diagonalizes
the magnetic helicity was also obtained in that paper. The principal set turned out to be
eigenfunctions of the curl operator, i.e., the Chandrasekhar–Kendall basis [3]. An analogous
calculation using the Chandrasekhar–Kendall basis set was carried out by Montgomery
et al [9]. The Chandrasekhar–Kendall functions also provide a diagonal representation for the
kinetic helicity invariant (

∫
v · �ω dv) of the Euler equation for an ideal fluid.

For the case of a steady, driven-dissipative dynamical system, we would anticipate the
continued presence of non-vanishing cross correlations in systems having more than one
ideal quadratic invariant. However, in addition to their being affected by geometry and
boundary conditions, these correlations now also may be affected by the properties of the
driver and/or the dissipation. Even if the ideal system were to have only an energy invariant,
these properties may introduce non-vanishing cross correlations into the corresponding driven-
dissipative system. In a freely decaying dissipative turbulence, the principal set of basis
functions might vary with time. Thus non-vanishing cross correlations can provide a rich
source of useful information in the investigation of turbulent physical systems.

To summarize, we have created a simple dynamical system with two quadratic invariants.
Utilizing this system, we have shown that the values of correlations between different
amplitudes depend critically on the initial conditions, namely on the values of the system’s
quadratic invariants. These results augment the work of Shebalin [10], which emphasized the
restrictions imposed by initial conditions in the presence of various discrete symmetries for
Navier–Stokes and magnetohydrodynamic fluids.

The most significant consequence of our analysis is evident when applied to closures
describing non-ideal inhomogeneous turbulence. With the exception of [1], there has been
scant application of formal closures, such as the direct-interaction approximation, test-field
model, and eddy-damped quasinormal Markovian closure to such systems. To permit efficient
numerical calculations, such closures generally are applied to situations in which correlations
between different spectral coefficients are zero. But we have just demonstrated that for
inhomogeneous turbulence having more than one non-vanishing ideal quadratic invariant,
these correlations would generally be zero only in a judiciously chosen representation, a
representation that would not necessarily be known a priori and which may indeed evolve
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with the turbulence. When an ideal invariant is nondiagonal, even the concept of its cascade,
direct or inverse, through a spectrum loses meaning. In such cases, the turbulent physics
information encapsulated in correlations may be able to be extricated efficiently only through
the use of direct numerical simulations.
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